Overview, Simulator, and Projects

Keegan Go
CS225A
Stanford University
Spring 2016
Where is Oussama?
Where is Oussama?
Overview

- course logistics
- software
- example project ideas
Course logistics

- all announcements will be sent through Piazza
 - questions for the staff should be posted here as well
- gradescope will be used to submit assignments (due Friday at midnight)
- office hours and section will be held in Gates 119 (upstairs)
- please forgive our scheduling changes!
Homework

- the first 3 homeworks (0-2) will introduce software
 - you’ll do your first control of a robot here!
- in homework 3, you will implement the control laws on a real robot (puma)
- additionally, you will prepare a few slides for lecture (later on)
 - these are informal and only meant to show your project progress
Projects

- Some lectures will be devoted to project discussion, please come prepared
 - For instance next Tuesday
- Heavy on the code (but it will serve you well)
 - May require work in external domains (CV especially)
- Projects should be finalized by the end of April
 - This gives you roughly 5 weeks to complete it!
- In terms of requirements
 - Finalized project slides (~ week 4)
 - Weekly check-ins with your mentor (short email, or stop by office hours)
 - Midterm report (~ week 6) (extra credit if you’ve made great progress)
 - Demo for the staff (~ week 9)
 - Public demo (during finals week)
 - Final report (don’t worry too much about this)
- We are here for you
 - Please come to office hours to discuss ideas often!
Questions?
Software

- main emphasis of this course
- essentially the product of the material in CS223A
 - but is now VERY actionable
- consists of two parts
 - simulator
 - controller
Simulator

- input: joint torques, current state \((q, dq)\)
- output: state at next time step
- perform integration over time (time constant matters)
- may also report/resolve contact forces
 - advanced feature, we will say more about this later
Controller

- input: current state, possibly other sensor data (visual, force, etc.)
- output: joint torques to apply
- from current state and kinematics you can compute all necessary quantities
 - like in CS223A...
 - but we do this for you!
- you will implement everything from joint space to operational space control
SAI

- used to be SCL but we are working on repackaging it with more utilities
 - thank you to Samir Menon for developing this!
- our simulator + controller package
- flexible specification of robots
 - and then we compute everything for you
- allows for combining multiple tasks into a single controller
- framework makes it easy to mix and match robots and controllers
- provides visualization (incredibly helpful for debugging)

- examples provided through tutorials
 - in fact, it is the homework to go through these

- will definitely take some work learn how to use
 - but again, we are here for you
Demo time...
But wait, how many are used to command line?
Real demo time!
Process of implementing a controller on a real robot

- derive/design the control
- test in simulator
- run on robot

- essentially the order of the class
- must go in this order!
 - robots are very fun to use... but very expensive to break
- should alternate between steps 2 and 3 as you add more features
 - for instance, connecting the robot to visual input
Ready to start?

- we will be making a few changes to repositories
 - you should be fine if you have already got things working
 - otherwise we will put out instructions for macs tomorrow
 - sorry windows users :(
- come to section or OH tomorrow if you need help setting up
 - or want to talk about the project!
 - the essential information can be found on the SCL wiki
 - slides will be posted after section
- please think about project ideas over the weekend
 - make posts on Piazza discussing your interests
 - we will discuss these in class Tuesday
Some project ideas
Passivity controller for teleoperation

https://stanfordrobotics.atlassian.net/wiki/display/TEL/Control+Framework
3D dynamic surface traversal

https://stanfordrobotics.atlassian.net/wiki/display/TEL/Control+Framework
robotic learning through demonstration

https://stanfordrobotics.atlassian.net/wiki/display/TEL/Control+Framework